shim
Pytorch implementation of the tensor shim.
Classes
PyTorchBackendTensorShim
class PyTorchBackendTensorShim():PyTorch backend shim/bridge for converting from/to PyTorch tensors.
Ancestors
- BackendTensorShim
- abc.ABC
- bitfount.types._BaseSerializableObjectMixIn
Static methods
def clamp_params(    p: _TensorLike, prime_q: int, precision: int, num_workers: int,) ‑> bitfount.types._TensorLike:Method for clipping params for secure sharing.
Constrains the parameters for secure sharing to be within the
required range for secure sharing. Used only when
steps_between_parameter_updates is 1.
Arguments
- p: The tensor to be constrained.
- prime_q: The prime use for secret aggregation.
- precision: The precision used for secret aggregation.
- num_workers: The number of workers taking part in the secure aggregation.
Returns The clamped parameters.
def is_tensor(p: Any) ‑> bool:See base class.
def to_list(p: Union[np.ndarray, _TensorLike]) ‑> List[float]:See base class.
def to_numpy(t: Union[_TensorLike, List[float]]) ‑> numpy.ndarray:See base class.
def to_tensor(p: Sequence, **kwargs: Any) ‑> bitfount.types._TensorLike:See base class.
Variables
- static fields_dict : ClassVar[Dict[str, marshmallow.fields.Field]]
- static nested_fields : ClassVar[Dict[str, Mapping[str, Any]]]