shim
Pytorch implementation of the tensor shim.
Classes
PyTorchBackendTensorShim
class PyTorchBackendTensorShim():
PyTorch backend shim/bridge for converting from/to PyTorch tensors.
Ancestors
- BackendTensorShim
- abc.ABC
- bitfount.types._BaseSerializableObjectMixIn
Static methods
def clamp_params( p: _TensorLike, prime_q: int, precision: int, num_workers: int,) ‑> bitfount.types._TensorLike:
Method for clipping params for secure sharing.
Constrains the parameters for secure sharing to be within the
required range for secure sharing. Used only when
steps_between_parameter_updates
is 1.
Arguments
p
: The tensor to be constrained.prime_q
: The prime use for secret aggregation.precision
: The precision used for secret aggregation.num_workers
: The number of workers taking part in the secure aggregation.
Returns The clamped parameters.
def is_tensor(p: Any) ‑> bool:
See base class.
def to_list(p: Union[np.ndarray, _TensorLike]) ‑> List[float]:
See base class.
def to_numpy(t: Union[_TensorLike, List[float]]) ‑> numpy.ndarray:
See base class.
def to_tensor(p: Sequence, **kwargs: Any) ‑> bitfount.types._TensorLike:
See base class.
Variables
- static
fields_dict : ClassVar[Dict[str, marshmallow.fields.Field]]
- static
nested_fields : ClassVar[Dict[str, Mapping[str, Any]]]