federated_training
Algorithm to train a model remotely and return its parameters.
Classes
FederatedModelTraining
class FederatedModelTraining(*, model: _DistributedModelTypeOrReference, **kwargs: Any):
Algorithm for training a model remotely and returning its updated parameters.
This algorithm is designed to be compatible with the FederatedAveraging
protocol.
Arguments
model
: The model to train on remote data.
Attributes
name
: The name of the algorithm.model
: The model to train on remote data.
Ancestors
- bitfount.federated.algorithms.model_algorithms.base._BaseModelAlgorithmFactory
- bitfount.federated.algorithms.base._BaseAlgorithmFactory
- abc.ABC
- bitfount.federated.roles._RolesMixIn
- bitfount.types._BaseSerializableObjectMixIn
Methods
def modeller( self, **kwargs: Any,) ‑> bitfount.federated.algorithms.model_algorithms.federated_training._ModellerSide:
Returns the modeller side of the FederatedModelTraining algorithm.
def worker( self, hub: BitfountHub, **kwargs: Any,) ‑> bitfount.federated.algorithms.model_algorithms.federated_training._WorkerSide:
Returns the worker side of the FederatedModelTraining algorithm.
Arguments
hub
:BitfountHub
object to use for communication with the hub.
Variables
- static
nested_fields : ClassVar[Dict[str, Mapping[str, Any]]]