train_and_evaluate
Algorithm to train and evaluate a model on remote data.
Classes
ModelTrainingAndEvaluation
class ModelTrainingAndEvaluation( *, model: _DistributedModelTypeOrReference, pretrained_file: Optional[Union[str, os.PathLike]] = None, **kwargs: Any,):
Algorithm for training a model, evaluating it and returning metrics.
Arguments
model
: The model to train and evaluate on remote data.
Attributes
name
: The name of the algorithm.model
: The model to train and evaluate on remote data.
note
The metrics cannot currently be specified by the user.
Ancestors
- bitfount.federated.algorithms.model_algorithms.base._BaseModelAlgorithmFactory
- bitfount.federated.algorithms.base._BaseAlgorithmFactory
- abc.ABC
- bitfount.federated.roles._RolesMixIn
- bitfount.types._BaseSerializableObjectMixIn
Methods
def modeller( self, **kwargs: Any,) ‑> bitfount.federated.algorithms.model_algorithms.train_and_evaluate._ModellerSide:
Returns the modeller side of the ModelTrainingAndEvaluation algorithm.
def worker( self, hub: BitfountHub, **kwargs: Any,) ‑> bitfount.federated.algorithms.model_algorithms.train_and_evaluate._WorkerSide:
Returns the worker side of the ModelTrainingAndEvaluation algorithm.
Arguments
hub
:BitfountHub
object to use for communication with the hub.
Variables
- static
fields_dict : ClassVar[Dict[str, marshmallow.fields.Field]]
- static
nested_fields : ClassVar[Dict[str, Mapping[str, Any]]]